Chapter 4: Force and Motion Tuesday January $27^{\text {th }}$

- Newton's laws:
- Forces and acceleration; Newton's $1^{\text {st }}$ law
-Free-body diagrams
-Newton's $2^{\text {nd }}$ law
- Normal/contact forces and weight
- Apparent weight in non-inertial situations
- Newton's $3^{\text {rd }}$ law
- Other forces relevant to 2048 (tension, spring, if time)
- Demonstrations, iClicker and example problems

Reading: up to page 62 in the text book (Ch. 4)

What causes acceleration?

Linguistic arguments:

- Some sort of interaction - loosely speaking, a push or a pull on an object.
-We call this a force, which can be said to act on a body.
- Examples of forces:
\longrightarrow Normal or "contact force"
\longrightarrow Gravitational force
Electromagnetic force
Weak and strong nuclear forces

Newton's first law

" A body in uniform motion (constant velocity) remains in uniform motion, and a body at rest remains at rest, unless acted upon by nonzero net force"
"If no net force acts on a body, then the body's velocity cannot change; that is, it cannot accelerate"
"Forces cause changes in motion (acceleration)" WARNING LABEL

1. Friction and air resistance have a tendency to distort our comprehension of the nature of forces.
2. Acceleration applies to velocity, not speed: there are situations in which your speed remains constant, yet you are accelerating.
3. "Net Force" implies that the sum of all forces is non-zero.

Free-body diagrams

$$
\sum \vec{F}=0=\vec{a}
$$

The 'net' force equals zero
-The forces shown above are what we call "external forces."
-They act on the "system" S.

- S may represent a single object, or a system of rigidly connected objects. We do not include the internal forces which make the system rigid in our free body diagram.

Newton's second law

Newton's definition: "The rate at which a body's momentum changes is equal to the net force acting on the body"

The more familiar version:

$$
\vec{F}_{\mathrm{net}}=m \vec{a}
$$

Note that Newton's $2^{\text {nd }}$ law includes the $1^{\text {st }}$ law as a special case ($F=0$).
-We may treat the components separately.

$$
F_{\mathrm{net}, x}=m a_{x}, \quad F_{\mathrm{net}, y}=m a_{y}, \quad F_{\mathrm{net}, z}=m a_{z}
$$

-The mass, m, is a scalar quantity.
$\cdot 1 \mathrm{~N}=(1 \mathrm{~kg})\left(1 \mathrm{~m} \cdot \mathrm{~s}^{-2}\right)=1 \mathrm{~kg} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-2}$

Gravitational Force

During free fall

$$
|\vec{a}|=g
$$

$$
F=m a=m g
$$

Gravitational Force

During free fall

$$
\Rightarrow \quad \vec{F}=m \vec{a}=-m g \hat{j}
$$

- This is always true at the surface of the earth, and will usually be the case for problems worked in this class.
- Even when a mass is stationary, e.g., on the surface of a table, gravity still acts downwards with a magnitude equal to $m g$.
- This leads to the concept of a normal force.

What is mass (and weight)?

This is not a trivial question!

- On earth, we typically* use the fact that the acceleration due to gravity is constant for all objects, and characterize mass according to the force needed to balance the earth's gravitational pull.
-We call this "weight", measured in Newtons (v. important!)
-In outer space, everything is weightless, but not massless!!
Mass is simply the characteristic of a body that relates a force on the body to the resulting acceleration
- This is how one has to measure mass in outer space; no static method works, e.g., a balance or scale (answer depends on g).
- YOUR MASS DOES NOT CHANGE IN OUTER SPACE!!!
*Not always the case, particularly in laboratory experiments.

Weight (a force!):
-The internal forces within the table supply a normal force, which is directed normal to the surface of the table, i.e., up.
-If the body remains stationary, then the normal force must be equal in magnitude (opposite in direction) to the weight.

$$
N=W=F_{g}=m g \text { Newtons }(\mathrm{N})
$$

Normal force

Weight (a force!):
-The internal forces within the table supply a normal force, which is directed normal to the surface of the table, i.e., up.
-If the body remains stationary, then the normal force must be equal in magnitude (opposite in direction) to the weight.

$$
N=W=F_{g}=m g \text { Newtons }(\mathrm{N})
$$

Normal force

- If you are the one holding the mass in a stationary state, you must supply the necessary upward force.
-This is the sensation of weight.
- You would not feel this sensation in outer space.
Weight (a force!):

$$
N=W=F_{g}=m g \text { Newtons }(\mathrm{N})
$$

Apparent weight in non-inertial frames

Newton's laws apply only in 'inertial reference frames'

-The scale reading is equal to the normal force on the passenger from the scale.
-If we are to use Newton's laws (specifically 2nd law), we must analyze this problem from an inertial frame, i.e. from the stationary frame corresponding to the ground.

Newton's $3^{\text {rd }}$ law

If object A exerts a force on object B, then object B exerts an oppositely directed force of equal magnitude on object \boldsymbol{A}.
For every "action" force, there is always an equal and opposite "reaction" force; we call these a "third-law force pair."

Newton's 3rd law

Newton's 3rd law

What happens next?

Newton's 3rd law

What happens next?

Newton's $3^{\text {rd }}$ law

Newton's 3rd law

Newton's 3rd law

Why doesn't the earth fall?

